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1. INTRODUCTION

The problems of elastic stability under nonconservative forces have

attracted many researchers in the last two decades. A review paper by

G. Herrmann [1] contains a comprehensive bibliography of work performed

before 1967. The practical significance of this class of problems has

become increasingly noted with the advancement of modern technology. A

flexible missile under thrust and a structural part of an aircraft under

aerodynamic forces are obvious examples. Approximate methods are usually

required for the solutions of such problems. Galerkin's method was first

used by H. Leipholz [2] to obtain solutions for a nonconservative system.

Because boundary value problems in the theory of nonconservative elastic

stability are nonself-adjoint, by virtue of the fact that nonconservative

forces do not possess potentials, no complete functional exists for the

classical form of Hamilton's principle. M. Levinson [7] points out later

that the conventional Hamilton's principle with nonconservative forces

can be written as a well-posed variational principle with some constraint

conditions and the Ritz method can thus be employed, formally at least,

for the solution of these problems. A nore recent trend has been the

interest in the establishment of well-posed variational principles with-

out any constraint conditions by the introduction of the adjoint systems

[4-10].

Based on the variational principle suggested by Levinson, the finite

element method has been employed for solutions of several nonconservative

stability problems without damping [11,12,13]. In contrast, the present

work is an application of the variational principle of Leipholz' type [5].

The effects due to both the internal and external damping are also included
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in this study. The finite element method has been shown to be of the Ritz

type of approximations in the linear theory of elasticity [14,15,16). A

variational principle is therefore a natural basis for its formulations.

The effect of damping on various nonconservative stability problems has

been studied by many investigators [9,10,17-34]. The difficulty arises

not only from the nonself-adjoint nature of the differential equations

but also from the fact that the eigenvalues involved are complex numbers

in general.

Two classical problems with both internal and external damping terms

are considered in this work, i.e., the Leipholz' problem [2] (a cantilevered

column with uniformly distributed force tangential along the column's length)

and the Beck's problem [35] (a cantilevered column subject to a follower

force at its free end). The internal damping is assumed to result from a

Kelvin-Voigt type of material and the external damping, due to a dissipative

force proportional to the velocity at a point in the column. In the next

section, the differential equations and boundary conditions of the problems

and their adjoints are defined. The derivation of the respective adjoint

variational principles is also outlined here. In Section 3, we give the

finite element formulations that lead to the matrix eigen-equations. Final

results and discussion on the numerical methods employed in this work are

presented in Sections 4 and S.
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2. STATEMENT OF THE PROBLEM AND THE BASIS OF SOLUTIONS

The configurations and loads of Leipholz' problem and of Beck's are shown
in Figures 1(a) and l(b). In the absence of damping, the differential equa-
tion for Leipholz problem [2] is

El + q(k-x) pAu + 0,

and for Beck's problem [33],

a 4  a, D _ _ a2  
(2)

E 1 :4 + p -2 + A 0,2(2

ax a~at
with boundary conditions for both cases:

U - = a~u o
Sx=° ax-o

and 
(3)

2 3-

3=£ x=t.

where u= u(-tF is the deflection of the column from its undisturbed postion;
x,t are the spatial and time variables, respectively; E, the Young's modulus,
P, the density; 1, the second moment and A, the area of the cross-section. The
letter q denotes the force per unit length in the Leipholz' problem and P the
concentrated follower force in Beck's problem.

To include damping effects, a dissipative for Fd, such as the air resistance,
is assumed to be proportional t- ýhe velocity of the column at a point, i.e.,

F = _ -u 
(4)

S



where 01 is the external imping constant. The material is assumed to be

of a linear viscoelastic solid of a Kelvin-;oigt type. The one dimensional

stress-strain relation can be written as

dc

a = E c + E* - (S)

where o,e are the one-dimensional stress and strain respectively; and E*,

the viscosity of the material.

The equations of motion, including damping terms, are then [9]
a4u a u u a2• u • a_ 2u

EI WI _-- + q(f-x) - 81-+ pA = 0 (6)
t X72 +d at at

for Leipholz' problem and

34u asuu 32U au a 2-
El + E*I + P 0 + A 0 (7)

axa 2  at at

for Beck's problem.

It will be convenient to use nondimensional quantities for the analysis.

Thus, let

x tu
= -= - = --

E* a pA9.4  [ (8)

S-, B = 1 C = - I

Ec EIc EI

where the constant c has the dimension of time and all other quantities in

Eqs. (8) are dimensionless. The nondimensionalized load parameters are

qt
3

Q-
EI
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and

Q = pk 2  (9)

El

for Leipholz' and Beck's problem respectively. Using the notation defined

in Eqs. (8) and (9), the nondimensionalized differential equations become

IV *IV -

u + ylu + Q(l-x)u"' + 8u + u = 0 (10)

for Leipholz problem and

IV .IV ..
U + n u + QuQ + 8 u + u = 0

for Beck's problem. The boundary conditions are now,

ul u1l 0
x=O = X=O

(12)

[ulf + T;"] = [u"' + flU'"j] 0
x=l x=l

for both cases. Here we have adapted the usual notation that a prime (')

or Roman numeral denotes a differentiation with respect to x and a dot (-

denotes differentiation with respect to t. The problems adjoint to these

two have been shown [9] to be

vIV - n OV + [Q(1-x)v]" + v - = 0 (13)

vi = v'1 = 0
x=O x=O

(14)

[vN i - T" '1'] = (vo I r, 0
x=l x~l



for the adjoint to the Leipholz problem, and

vIv - nv + Qv" + v- - 0 (15)

v1 v'l 0
x=O x=O

(16)
[vol - n '1" + Qv] = [v'" t - nr'"' + Qv'] = 0

for the adjoint to Beck's problem, where v denotes the adjoint field variable.

For Leipholz: problem and its adjoint, one can consider Eqs. (10) and (13)

as the dynamic equations of equilibrium of the original and the adjoint system.

Introducing virtual displacements 6u and 6v which satisfy the respective end

conditions, it is then possible to generalize the princip1 o or .;rtual work

such that

[uIV + n uIv + Q(l-x)u"' + 8t + u]6v

+ IvIV - n r V + {Q(1-x)v}"' + v - 8ý']6u = 0. (17)

Integrating Eq. (17) over the interval (0,1) and between the two time limits t1

and t 2 , and imposing end conditions of Eqs. (11) and (14), a generalized varia-

tional principle can be written [9] as the following

6 f L dt 0, (18)

with

L = T - V- Vd, (19)

and
1

T - f =1 -dx, (20)2 0
1

V = if {u',v'" - Q[(l-x)v]'u'ldx, (21)
2o



1

V f {n(v" fat"t - u'ý"'") + a(va - u')}dx, (22)"Vd = 4 0

can be referred to as the generalized kinetic energy, potential energy and

dissipative potential resepctively.

Similar results can be obtained for Beck's problem with the expression

of V 'in Eq. (21) replaced by that of Eq. (23). Thus

-- f [u'v't - Q u'v']dx + 1Q u'(l,t)v(l,t) (23)

2o 2

for Beck's problem and its adjoint.

The finite element formulations are based on the variational equation of

(18), where L is clearly a complete functional. In comparison, the work by

Barsoum [11] and that by Mote [12,13] are based on an extended Hamilton's

principle of the form

f L1 6W dt = 0 (24)
tl t1

where L1 is a complete functional but 6W1 , which is the virtual work done by

nonconservative forces, cannot be expressed as the variation of a path-

independent functional. Using a different approach, Anderson [36] has sho'n

that the adjoint variational principle (18) can lead to more accurate

numerical solutions than does the variational expression of (24).

3. FINITE ELEMENT FORMULA'IONS

In the application of the finite element method, the column being analyzed

is divided into L segments (elements) as shown in Figure 1(c). In conjunction

with the variational principle of Eq. (18), the integrations in Eqs. (20), (21)

and (22) are replaced by summations of the quantities in all the elements. (The

following derivation is carried out for Leipholz' problem. Similar outline of

9



the procedure for Beck's problem will not be repeated here [37].) Thus,

T = L 1 1 1(i)'4(i)dx (25)
L * 

1  i-(l, i

v = L 1 Li ',,i)v(i - Q[c(l-x)v(i) 1] u'(i) }dx (26)V=iZI i- li1

and

iL 1

d = 1l -2 () [n(v"11 a(iu" uf{)'i~v"(i)) + O(v6 - u0)]dx (27)

where 0  0=, tL = 1; and the superscript (i) denotes the quantities in the

i-th element.

We effect the following change of independent variable. Let

(x- i) = L(x - -_) (28)
t.i-li. L

In Eq. (28) aid in the sequel, we have assumed that all the elements are of the

same length. Consequently,

d-= L, 2 =0 (29)
dx dx

For some function f(x),

df d -f d2 f = L2 d2 f (30)

dx d4 dx d2

where the notation

f(x) = f[x(•)] = f(C)

has been adapted for simplicity.

10



Using the new independent variable C, Eqs. (25), (26) and (27) become the

following:

L 1I
T = _1 f u d (2Sa)

2L i=l o

L 11
2 i=l o

+ Q[u' Ci)v(i)- (L-i+l-Q)u' Ci)v' (i)] 1 }d (26a)

and L 1
Vd 1 f [nL$(v,,(i)6,,(i). u"Ci);" (i))

+ 8. (vc)(i); _ ui(i )i)]d4. (27a)
L

We shall use a polynomial to approximate the displacement field in an element.

The displacement and its first derivative (slope) will be required to be con-

tinuous between the two adjacent elements. Hence there are four degrees of

freedom for each element and the polynomial shall be cubic. In terms of a

Rayleigh-Ritz approximation, the coordinate function is chosen to be a piece-

wise analytic function.

It is convenient to let

ui)c(ý,t) = aT(4) X(t) = aT(c) UMi)eAt

and (31)

vCi)(ct) = JT() Y(t) = aT(c) v(i)eAt

where A is the usual eigenvalue parameter,

a (T) = {a,(z) a2 Cz) a 3 C) a4(0)1 (32)

11



is the displacement function vector and

uT(i) = fu i) U2 (i) Ui3  u4 (i)}

vT(i) {V1 i) V2 (i) V3 (i) V4 Mi) (33)

are the generalizeO displacement vectors in the i-th element and the superscript

T denotes the transpose of a matrix (or a vector). When we take U1 N U2 Mi) to

be the displacement and the slope respectively at the left pnd (see Figure l(c))
of (ih eleen and take Uat

of i-th element and take 3 Ci), the same at th' right end (same for

the vector V(i)), it is easy to see that a(4) must take the following form:

T
a (9) = {aI(4) a2 (C) a3 C") a4(M))

{l3? 32 : 2 (34)
= {1-3C + 243 -2t 2+43 34 2_23,; _2+ (3.

Using Eqs. (28)-(34) in the generalized energy expressions Eqs. (25a), (26a) and

(27a), and carrying out the variation of Eq. (18), we obtain the following

variational equation for the descrete system:

t 2

6f Ldt
t1 t L A A

1 I2 e2 t{6UT(i){X2 Z - ,[nL3 C + B C
2 i=L - L

+ LC +* Q[E + F - (L - i4.l)j IV(i)

A6VT(i){2_A _A
+ 6  i{A= + X[nLC3 + 8 - ]

L L

+ L3 C Q[E+FT - (L - i+l)PJU(i))}dt 0 (3S)

where A, B, C and F are constant matrices whose definition and numerical values

are given in the Appendix. It is noted in the above mentioned matrices only F

12



is not symmetric. In Eq. (3M), 6U(') and 6V(i) are independent of each

other. Since we are interested only in the solution of U( ), we can set

6U = 0, i = 1 .... L. (36)

Eq. (3S) now becomes

t2 L 2Xt T(i) 2 A 3  Af' I e 61 A-+ ,X[nL C + a --

t1 i=l L L
3 Ci)

+ L C + Q[E + -T _ (L-i+l)BN }U Mdt = 0 (37)

Up to this point, the matrices involved are referred to the individual elements

with a size of 4x4. Next we must form the overall matrix equation and eliminate

the redundant unknowns. To accomplish this, the boundary conditions and the

continuity conditions must be applied. In Leipholz' problem, the boundary

conditions for the original and the adjoint problem has the same form as the

following (see Reference [37] for a discussion on the adjoint boundary conditions

in Beck's problem.)

UI(1) = 1:1

(38)The C) [ =1121
U4 20

The continuity conditions are also the same for the original and the adjoint

problems:

p 3 (i.) = 1i) i = 2,3,....,L. (39)

U 4U(i-l) J 2lM

13



Introducing new vectors with independent elements

UT = (1) U4(1) 3(2) U4(2) ...... u3L- 4 (L-1)(
(40)

vT = (1) V4(1) V3(2) V4 ( 2)...... (L-1) I
and using the conditions of Eqs. (38) and (39), Eq. (37) can be rewritten as

ft2 e2 At 6VT K U dt = 0 (40)
ti

where

K = A 2 R + XS + T (41)

is a constant matrix of 2(L-1) x 2(L-1) and R, S and T are also given in the

Appendix.

Since now the vector 6V in Eq. (40) is arbitrary and all its elements are

independent, we obtain the final matrix eigen-equation

K U

= (X2 R + XS + T)U = 0 (42)

which is to be solved next.

4. METHODS OF COMPUTATION

Because dissipative systems possess complex eigenvalues in general, let

S= AI + i X2, i = 4-T (43)

denote the eigenvalue of the system, where AI and X2 Pre real numbers. When

A1 is positive and A2 0 0, the system loses stability by flutter, i.e. oscillations

with increasing amplitude. For each set of damping parameters 8 and n, the

critical load Qcr is obtained when A1 has just changed sign from negative to

positive. In this study, two methods were used in extracting the eigenvalues.

14



They are described briefly here.

A. Standard QR Algorithm [38,39] -

Three steps are required in using this approach:

1. To transform Eq. (SS) into the standard eigenvalue equation

(M - XI)U = 0 (44)

where [ ' *I
M = -P 1 R -P 1 Q (4S)

U { WJ (46)

and 0, I are zero and unit matrices, respectively.

2. To transform the matrix M into Hessenberg's form.

3. To extract all the eigenvalues from a Hessenberg's matrix using the

QR iteration. Steps (2) and (3) are accomplished by two Standard Subroutines

provided in the IBM System/360 Scientific Subroutine Package, i.e. HSBG and

ATEIG, respectively.

B. Rosenbrock's Method of Iteration [40] -

This is a trial and error method using the route along which the function

decreases most rapidly.

In terms of computer time, Method B is less efficient than Method A. In

applying Method B, there is a great tendency to converge to the wrong eigen-

value. However, once located correctly, the eigenvalue can be determined with

more accuracy than Method A.

15
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S. RESULTS AND DISCUSSION

Calculation for critical loads Q., are performed for the range of damping

parameters which is both of practical interest and sensitive in stabilizing

or destabilizing effects. Results are shown in Figures 2 through 10.

In Figure 2, the two lowest branches of the frequency curves are shown

for both the Leipholz' and the Beck's problem without either internal or

external damping. For small load Q, A is a purely imaginary number (X1 = O,

X2 = S1 in the notation used in the previous section.) As the value of Q

increases, eventually the two lowest branches coincide and Qcr is reached,

beyond which X1 becomes positive and the column will fail by flutter. In

Figure 3 through Figure 10 are presented Q/n2 vs. the damping parameter 8 or

n. These curves have shown that for the range 0<0<2.0 and 0<n<0.2, the damping

effect is extremely sensitive, In this range, the internal damping has a

destabilizing effect as can be seen fr6m Figures 3, 4, 7 and 8. The internal

damping can also have stabilizing effect in certain ranges, e.g. the range of

0<6<5.0 and 0.l<n<0.S for Leipholz' problem as shown in Figure 4. On the other

hand, the external damping always has a stabilizing effect which is very sensi-

tive when both parameters are small. This is seen in Figures 5, 6, 9 and 10.

It may be of some interest to note in Figure 4 for Leipholz problem that

when B = 0 and n approaches zero, the limit of Qcr is 2.327r2 while in Figure 5,

when ,i has been set to zero to begin with, Qcr has a value of 3.93n2. For

Beck's problem similar situation is observed in Figures 8 and 10 with Qcrl n0 .

1.10n2 and er 1 = 2.03r 2 . These are the cases when the solution of the limit

of the problem is not the same as the limit of the solution of the original

problem - a phenomena known as the destabilizing effect of damping first noted

by Ziegler [41].

16



A few words about the convergence of the data are in order here. Both

Barsoum [11] and Mote [12] have shown that for similar problems and using

the same displacement functions, the finite element solutions using eight

segements converge to within 1% of the known exact solutions. Eight is the

number used in this analysis. The solutions of Beck's problem presented

here for external damping alone show excellent agreement with the data

obtained by Plaut and Infante [27]. In comparing with the solutions for

Leipholz' problem without damping obtained by McGill [42] using a two-term

Galerkin's procedure and those obtained by Anderson and Walter for both

Leipholz' and Beck's problem with both using a three-term Ritz approxima-

tion, the data here show general agreement. Good agreement has also been

established between the data obtained here and those by Dzydlo and Solarz

[28] from the numerical calculations based on the exact frequency equation.

17



APPENDIX

Definitions and values of some matrices appeared in Section 3:

T
Af a(4) a T(;)d4

0

1 4"-+ - (SYMMETRIC)S 7

3_ 5 2 1 + 1
5 67 3 S57

I+i -i 1 - I..3*1 -_ 2 i4
2 S 7 4 5 6 7 S 7
33 1 2 3+ + 5 2 1 1 1
4 S 6 7 4 5 7 s 6 7 3 5 7

(A-1)

B = f a'0) aTc()d
0

36( --. ) (SYMMETRIC)
5 6

S1 1 3 1 1

5 6113 1 1 3113 1

L _6 (1+ 1 3) ( 1 ) 6 (1 +1 3) 1 1

3 4 S 5 6 3 4 5 3 S1 
(A-2)

C _ a aI (ý) aTI (4)d = 12 (SYMMETRIC)
6 4 (A-13

-12 -6 12
6 2 -6 4

1 TE f 1 a' (4) aT'(4)d4

0

36 ( 2-- + ) (SYMMETRIC)

2 5 5 6

--L 3 (A-4)
S 10 5

0 01 2
0 is

18



1

F = f a'(C) aT(C)d

1 1 1 1

2 02 10

1 1 1 1 1

10 2 6 10 60

1 1 1 1

1_. 1_.I1 0

10 60 10 . (A-S)

R=

RC1h+RC 2) R(1)+R(2) R (2 ) (2)033 11 34 12 13 014-0
%1 2 (~2) 2

R(1)+R4R) R2+R 24
43 1 44 2 23 240

R(2 ) R(2) R(2)+R(3) R(2)+R( 3 )
31 32 33 11 34 12

R(2) R(2) RC2)+RC3) RC2)+R(3)
41 42 43 21 44 22

0 0 CL-2) +R(L-1) R(L-2) +CL-i) R(L-1) R(L-1)
0033 11 34  + 12  13 14

(L-2) (L-1) R(L-2) (L-i) (L-l) (L-1)
R4 3L+R22 1  44  +R22  R23 24

I

1, RcL- 1 ) R2L-I) R R (L-1).+
2 31 R +F212 IRt R 12A ý

I
I cL R2-1) R•')• (4L-1).,2

I 41 44

(A-6)

with

= RCL) + R(L) + RCL) + R(L)
11 13 31 33= CRL) +o RfL) + R1CL) + RC(L)++ R(L) + R(CL)

712 R2 3 14 32 33 34 6(A-7)
K21 12R) RJL) RCL) + R(L) + RCL) + R(L)

=R(L) + R(L) + RCL) +4 RI)+ J) + C(L) R(L) + I)+Rk)jR22 = 22 32 42 R•3 R R' + R24 + 4
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The expressions for S and T are obtained by replacing the letter R with the
letter S and T respectively in Eqs. (A-6) and (A-7) wherever R appears.

Furthermore, R(i), S(i) and T(i) are defined below.

A
Rc() = .

(A-8)
L

AS(M) - n L3 C + s8 - (A-9)
L

T(i) = L3 C + QE+ FT - (L- i +1)B] (A-0)

where i 1,2 ..... ,L.
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(a) LEIPHOLZ' PROBLEM

(b) BECK'S PROBLEM

(c) FINITE ELEMENT MODEL

Figure I.

PROBLEM CONFIGURATIONS AND THE

FINITE ELEMENT IDEALIZATION
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LEIPHOLZ' PROBLEM: QCR/v 2 VS. 'v
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